
Towards VM Rescheduling Optimization Through
Deep Reinforcement Learning

Xianzhong Ding
∗

University of California, Merced

xding5@ucmerced.edu

Yunkai Zhang
∗

University of California, Berkeley

yunkai_zhang@berkeley.edu

Binbin Chen

ByteDance

chenbinbin.1996@bytedance.com

Donghao Ying

University of California, Berkeley

donghaoy@berkeley.edu

Tieying Zhang
†

ByteDance

tieying.zhang@bytedance.com

Jianjun Chen

ByteDance

jianjun.chen@bytedance.com

Lei Zhang

ByteDance

zhanglei.michael@bytedance.com

Alberto Cerpa

University of California, Merced

acerpa@ucmerced.edu

Wan Du
†

University of California, Merced

wdu3@ucmerced.edu

Abstract
Modern industry-scale data centers need to manage a large

number of virtual machines (VMs). Due to the continual cre-

ation and release of VMs, many small resource fragments

are scattered across physical machines (PMs). To handle

these fragments, data centers periodically reschedule some

VMs to alternative PMs, a practice commonly referred to

as VM rescheduling. Despite the increasing importance of

VM rescheduling as data centers grow in size, the prob-

lem remains understudied. We first show that, unlike most

combinatorial optimization tasks, the inference time of VM

rescheduling algorithms significantly influences their perfor-

mance, due to dynamic VM state changes during this period.

This causes existing methods to scale poorly. Therefore, we

develop a reinforcement learning system for VM reschedul-

ing, VMR
2
L, which incorporates a set of customized tech-

niques, such as a two-stage framework that accommodates

diverse constraints and workload conditions, a feature ex-

traction module that captures relational information specific

to rescheduling, as well as a risk-seeking evaluation enabling

users to optimize the trade-off between latency and accu-

racy. We conduct extensive experiments with data from an

industry-scale data center. Our results show that VMR
2
L can

achieve a performance comparable to the optimal solution

∗
Both authors contributed equally to this research.

†
Corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1196-1/2025/03.

https://doi.org/10.1145/3689031.3717476

but with a running time of seconds. Code
12

and datasets
3

are open-sourced.

CCS Concepts: • Computer systems organization →
Cloud computing; • Theory of computation → Rein-
forcement learning; Scheduling algorithms; • Software
and its engineering→Virtualmachines; •Applied com-
puting → Data centers.

Keywords: Cloud Computing, Virtual Machine Reschedul-

ing, Reinforcement Learning, Resource Management

1 Introduction
Cloud service providers allow end-users to access computing

resources, such as CPU and memory. They adopt resource

virtualization to maximize hardware utilization, allocating

Virtual Machines (VMs) [14, 60] with the requested resources

to end-users. An industry-scale data center is typically or-

ganized into clusters, where each cluster has hundreds of

Physical Machines (PMs), and each PM can host multiple

VMs that run independently [20, 28]. However, if a PM al-

ready hosts several VMs and the remaining resources on the

PM fail to fulfill an additional VM request, the resources left-

over cannot be used are called fragments [56, 59]. To allocate

the resources efficiently, a central server manages all VM

requests on PMs by performing two tasks, scheduling and

rescheduling, in order to achieve different resource utiliza-

tion goals, such as minimizing the overall fragment rate (FR)

or minimizing the number of migrations required to achieve

a specific FR.

Fragment Rate. FR quantifies the ratio of unusable CPU

resources to total available CPU resources across all PMs.

Specifically, the numerator represents the total CPU resources

that cannot be used to schedule a 16-core VM (i.e., CPU frag-

ments that are too small or scattered to accommodate such a

1
The majority of work was done during the internship at ByteDance.

2https://github.com/zhykoties/VMR2L_eurosys
3https://drive.google.com/drive/folders/1PfRo1cVwuhH30XhsE2Np3xqJn2GpX5qy

686

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3689031.3717476
https://github.com/zhykoties/VMR2L_eurosys
https://drive.google.com/drive/folders/1PfRo1cVwuhH30XhsE2Np3xqJn2GpX5qy
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689031.3717476&domain=pdf&date_stamp=2025-03-30

1

2

Figure 1.The number of VM arrivals and

exits per minute. The green line indicates

a continuous VMS process over 24 hours.

…

PM1 PM2 PMn

Free-20

VMnVMn+1… 1 FR = 50%

VM3-24

Free-12

VM2-28 …

PM

VM
Free

VM1-4

Figure 2. VMS process. The green num-

ber 1 denotes the VMS operation, select-

ing PMs for incoming VM requests.

Free-16

VMnVMn+1… 1

VM3-24

Free-16

VM2-28 …

PM

VM
Free

VM1-4 VM1-42

FR = 0%

PM1 PM2 PMn

Figure 3. VMR process. The red number

2 highlights the off-peak period when

VMR is typically performed.

VM). The denominator is the total available CPU resources

across all PMs. This metric helps assess how efficiently the

system utilizes its resources for large VM allocations.

VM Scheduling (VMS).When a new VM request arrives,

VMS selects one PM from all available PMs that can accom-

modate the request. If a VM is not scheduled properly, it

can directly affect the end user. Fig. 1 shows the distribution

of VM changes (VMs arriving and exiting) per minute over

24 hours, averaged over a 30-day period from a cluster in

our in-house data center. The y-axis represents the number

of VMs changed (arrivals and exits) within each minute. To

serve all users at all times, the VMS algorithm (green number

1) must handle the maximum number of VM changes, as indi-

cated by the green line, which represents the continuous VM

scheduling process throughout the day. The high queries per

second (QPS) require VMS algorithms to have strict latency

and stability, which deems only simple heuristic methods

with short inference time feasible. In practice, ByteDance

uses best-fit [27, 50], which sorts all PMs that meet the re-

quirements of the current VM according to the amount of

FR reduction before and after this VM is added, and chooses

the PM with the largest reduction. However, such heuristic

algorithms lead to many fragments scattered across PMs.

Combined with the continual exiting of completed VMs, it

leads to many fragments scattered across PMs. These have

to be solved by VM rescheduling.

VM Rescheduling (VMR). Rescheduling is critical to opti-

mize resource usage, which migrates VMs from their current

PMs to new destination PMs. Unlike VMS which needs to

run throughout the day, VMR is mostly performed during

off-peak hours in early mornings
4
where there are fewer

VM changes as indicated by the red dot in Fig. 1. Also, if

a rescheduling action fails, VMs can simply stay on their

original PMs without affecting the end-users. This allows

the use of more advanced algorithms.

VMR can be efficiently performed using live migration, en-

suringminimal downtime. Asmost data centers manage VMs

with compute-storage separation (i.e., using cloud disks) [38],

only the memory needs to be transferred. Specifically, we

first copy the VM’s memory state from the source PM to the

destination PM while it continues running on the source PM.

4
In less common cases, VMR is also performed if a high FR is observed that

could potentially lead to insufficient resources for upcoming VM requests.

Changes to the VM’s memory during this process, known as

“dirty pages” are tracked and re-copied incrementally [14]

until the remaining changes are small. At this point, the VM

is briefly paused for a final synchronization. Since modern

data centers use high-bandwidth networks for internal file

transfers [62], this VMR process incurs a low overhead.

Note that rescheduling is primarily applied to clusters host-

ing VMs that use hardware virtualization, similar to Elastic

Compute Cloud (EC2) environments. These VMs provide

strong isolation and have a high startup cost, making them

suitable for workloads running for extended periods, such as

development machines [46]. Rescheduling is unnecessary for

other short-lived tasks such as CI/CD or CronJob. They are

managed in separate clusters via Kubernetes, which offers

fast startup through operating system-level virtualization

[36]. For system stability, rescheduling is typically restricted

to the same cluster. A cluster typically involves no more

than several hundred PMs, since i) it allows allocation of

dedicated resources to different user groups, where specific

configurations can be better optimized, and ii) each cluster

can be monitored and managed independently, allowing one

cluster to upgrade without affecting others [1]. A migration

number limit (MNL) is set to control the number of VMs to

migrate and is often chosen to be 2 ∼ 3% of all VMs.

Smaller VMs (e.g., proxy servers
5
or routine monitor-

ing/testing) are easy to create using fragmented resources

and have almost no risk of supply interruption. Conversely,

many high-priority tasks that are directly consumer-facing

require medium and large-sized VMs. Thus, our study fo-

cuses on the 16-core FR to meet the operational needs at

ByteDance
6
, where 16-core is the default VM type for devel-

opment machines.

Benefits of VMR. Consider the FR in Fig. 2. PM1 has 12

CPUs left and PM2 has 20 CPUs left, but only PM2 can host

another 16-Core VM, and the remaining 12 + (20 − 16) = 16

CPUs become fragments. The FR is therefore 16/(12 + 20) =
50%. In Fig. 3, VMR reassigns VM1 from PM1 to PM2, leaving

5
A proxy server acts as an intermediary between a client requesting a

resource and the server providing that resource.

6
A simple extension allows our framework to accommodate FR defined

based other X-Core VMs under different specifications, in the form of a

weighted average of several VM types, or even a combination of CPU and

memory fragments. See Section 5.5.

687

16 free CPUs on each PM, which is just enough to handle an

additional 16-Core VM. The FR after VMR becomes 0%.

Note that while the VMR algorithm computes a solution,

VMS is still handing new VM requests and completed VMs

are also being deleted. The dynamic nature of VM states

causes the computed VMR solution to no longer be optimal

or even feasible
7
. Therefore, VMR also needs to be very

efficient. In Section 2, we formulate VMR as a Mixed Integer

Programming (MIP) problem and conduct an experiment

to show that different from other MIP applications, VMR

inference time must be under five seconds for the solution

to remain competitive.

Most existing solutions either involve accelerating MIP

solvers [48, 66] or rely entirely on heuristics [27]. However,

the former still fails to meet the strict latency requirement,

while the latter leads to suboptimal solutions. In this work,

we develop VMR
2
L, a deep Reinforcement Learning (RL)

system for VM rescheduling. RL is a great fit for two reasons.

First, while RL often suffers from poor sample complexity

[37], VMR operates in a deterministic environment, meaning

that, given the current state and action, the next state can

be predicted exactly. This allows us to build a simulator

that only requires the initial VM-PM mappings for training,

without having to interact with a real data center, which

drastically lowers the number of training samples required.

Second, the generalization ability [45] of deep RL enables the

agent to train offline and apply the learned policy directly

in production without retraining. This is crucial in meeting

the strict latency requirements for VMR. We summarize the

contributions of this paper as follows:

• RL for VM rescheduling. We identify the unique

characteristics of the rescheduling problem in terms of

latency requirement and environmental uncertainties,

which motivate its formulation as an RL problem.

• Customized techniques for VM rescheduling. We

design i) a two-stage framework to flexibly accommo-

date different service constraints and address the ex-

ploration challenge, ii) a feature extractionmodule that

scales to large data centers while capturing relational

information specific to VMR, and iii) a risk-seeking

evaluation pipeline that leverages the deterministic

nature of VMR to offer a better trade-off between in-

ference speed and solution quality.

• A VMR2L prototype and extensive evaluation.We

collect two real datasets and show that VMR
2
L can

generalize to different objectives, service constraints,

as well as abnormal workloads at deployment time.

Our code and datasets are released.

7
A VM will not be rescheduled if it has exited or the destination PM no

longer has enough resources or fails to meet other service constraints.

2 Motivation Experiment
2.1 Problem Formulation and Two Algorithms
In a data center cluster, let V,P be the set of VMs and PMs,

respectively. On the supply side, a PM 𝑖 ∈ P is equipped with

two Non-Uniform Memory Access (NUMA) nodes
8
. For PM

𝑖 , NUMA 𝑗 can provide𝑈𝑖, 𝑗 CPU resources and 𝑉𝑖, 𝑗 memory

resources. On the demand side, a VM 𝑘 ∈ V requires𝑢𝑘 CPU

resources and 𝑣𝑘 memory resources and should be deployed

on a single PM using𝑤𝑘 ∈ {1, 2} NUMAs.𝑤𝑘 is the number

of NUMAs required by VM 𝑘 (1 for single-NUMA deploy-

ment, 2 for double-NUMA). After deploying several VMs on

PM 𝑖 ∈ P, it remains 𝑈̃𝑖, 𝑗 spare CPU resources on NUMA

𝑗 . We define X-core fragment of PM 𝑖 as
∑

𝑗 (𝑈̃𝑖, 𝑗%𝑋), i.e.,
the remaining CPUs cannot be further utilized by additional

X-core VMs.

Given𝑀 VMs that are initially assigned to 𝑁 PMs, VMR

reassigns a subset of deployed VMs and migrates them onto

some new PMs. The Migration Number Limit (MNL) is a
tunable parameter that defines the maximum number of

VMs that can be migrated during each rescheduling task.

By adjusting MNL, we can control the trade-off between

performance improvements and migration overhead. We

formulate VM rescheduling as an optimization problem that

searches for the optimal reassignment of VMs (up to the

specified MNL), with the goal of minimizing the total X-core

fragments across all PMs:

Minimize:

∑︁
𝑖, 𝑗

(
𝑈𝑖, 𝑗 −

∑︁
𝑘

𝑥𝑘,𝑖, 𝑗 · 𝑢𝑘
𝑤𝑘

− 𝑋𝑦𝑖, 𝑗

)
(1)

Subject to:

∑︁
𝑘

𝑥𝑘,𝑖, 𝑗 · 𝑢𝑘
𝑤𝑘

+ 𝑋𝑦𝑖, 𝑗 ≤ 𝑈𝑖, 𝑗 , (2)∑︁
𝑘

𝑥𝑘,𝑖, 𝑗 · 𝑣𝑘
𝑤𝑘

≤ 𝑉𝑖, 𝑗 , (3)∑︁
𝑖, 𝑗

𝑥𝑘,𝑖, 𝑗 = 𝑤𝑘 , (4)∑︁
𝑘

(1 − 𝑥𝑘,𝑖𝑘 , 𝑗𝑘) ≤ 𝑀𝑁𝐿, (5)

𝑥𝑘,𝑖,0 = 𝑥𝑘,𝑖,1, ∀𝑘 ∈ {𝑘 |𝑤𝑘 = 2}, (6)

𝑥𝑘,𝑖, 𝑗 ∈ {0, 1} and 𝑦𝑖, 𝑗 ∈ Z. (7)

Here, {𝑥,𝑦} are the decision variables, where 𝑥𝑘,𝑖, 𝑗 represents
whether VM 𝑘 is deployed to the NUMA 𝑗 of PM 𝑖 in the

new assignment (0 for No, 1 for Yes), and 𝑦𝑖, 𝑗 represents the

maximum number of X-core VMs can be deployed on NUMA

𝑗 of PM 𝑖 using the remaining CPU resources. The objective

in Equation 1 is to minimize the total X-core fragments.

8
A NUMA node is a subsystem within a PM that controls both memory and

processing units. This architecture improves performance by allowing each

node to access its local memory faster than memory on another node [5].

688

Table 1. VM types considered in the main experiments. Extra resource and service constraints are considered in Section 5.

VM Types large xlarge 2xlarge 4xlarge 8xlarge 16xlarge 22xlarge

Requested CPU 2 4 8 16 32 64 88

Requested Memory (GB) 4 8 16 32 64 128 176

Deploy NUMA Single Single Single Single Double Double Double

H
Initial FR

H

Five-Second Limit

Figure 4. FR and inference time at different MNLs.

Equation 2 and 3 enforce that the resource usage by VMs

cannot exceed the total capacity of a PM. Equation 4 indi-

cates that each VM must be deployed on exactly one PM.

Equation 5, in which 𝑖𝑘 and 𝑗𝑘 are the initial PM id and

NUMA id (0 for double-NUMA VMs) of VM 𝑘 , means the

total migration number should not exceed the limit. Lastly,

Equation 6 forces VMs with double NUMAs to deploy both

NUMAs on the same PM.

Note (1) each PM has two NUMAs; (2) 𝑤𝑘 is a constant

for each VM as determined by their types (Table 1). Thus,∑
𝑖, 𝑗 𝑥𝑘,𝑖, 𝑗 = 𝑤𝑘 (Equation 4) enforces that the actual NUMA

allocation number of VM 𝑘 matches the desired configu-

ration. When 𝑤𝑘 = 1, Equation 4 constraints VM 𝑘 to be

deployed on one NUMA of a PM; when𝑤𝑘 = 2, Equation 4

constraints VM 𝑘 to be deployed on both NUMAs of a PM.

Note that deploying VM 𝑘 on two NUMAs of two different

PMs (each PM hosting a NUMA) violates 𝑥𝑘,𝑖,0 = 𝑥𝑘,𝑖,1,∀𝑘 ∈
{𝑘 |𝑤𝑘 = 2} (Equation 6). Because𝑤𝑘 ≠ 0, it guarantees each

VM is deployed.

Mixed Integer Programming (MIP) Solvers. The above
optimization problem can be solved by an off-the-shelf MIP

solver such as CPLEX [2] and Gurobi [3], which finds a near-

optimal solution through branch & bound, cutting planes,

etc. In our experiments, we use Gurobi.

Heuristic Algorithm (HA). To obtain a feasible solution

within a short time frame, heuristic algorithms are often

used in industry data centers [4]. They normally include

two stages: filtering and scoring. In the filtering stage, we

calculate the change in FR for each VM as if it is removed

from its source PM, and only select the VM candidate that

corresponds to the most drop in FR. In the scoring stage, we

calculate the change in FR as if the selected VM is migrated to

each of the eligible PMs. We then greedily assign the selected

VM to the PM that leads to the largest drop in FR. The above

two stages are repeated until the MNL is reached.

Elbow Point

Figure 5. Effect of inference time on achieved performance.

2.2 Experiment Results
We conduct experiments to quantify the performance of the

above MIP and HA in terms of FR and inference time. We use

a real dataset from a data center with 280 PMs and 2089 VMs.

The detailed experiment settings can be found in Section 4.

Fig. 4 (left) depicts the FR performance of MIP and HA

under different MNLs. MIP’s FR is lower than HA’s since it

guarantees a near-optimal solution. Moreover, the FR gap

between MIP and HA becomes larger as MNL increases,

because HA only exploits the action that would lead to the

most significant drop in FR when it migrates one VM. After

migrating 25 VMs, the heuristic algorithm can no longer find

any more VMs that can lower the FR. In Fig. 4 (right), we see

that as the MNL increases from 25 to 50, the computation

time of MIP grows exponentially, taking 1.78 minutes for 25

migrations and 50.55 minutes for 50 migrations. This poor

time complexity is unacceptable in data centers where new

VM requests continually come in, and the problem state is

constantly changing.

To see how a near-optimal solution can result in a subopti-

mal achieved performance due to its poor inference time, we

conduct an experiment on real traces from our in-house data

center by selecting 200 random initial VM-PMmappings. For

each mapping, we use Gurobi to compute a near-optimal

solution to the MIP formulation of VMR, which takes 50.55

minutes. However, since VMs were dynamically arriving and

exiting, most actions were no longer feasible and would fail

to be deployed after 50 minutes. We then compute the final

performance that could be achieved as if the near-optimal

solution was instead returned in a shorter period of time,

averaged over the 20 mappings. Fig. 5 shows that the solu-

tion remains near-optimal if it could be computed within

five seconds, as highlighted by the “elbow point”. However,

FR reduction quickly diminishes once the inference time

exceeds that. Therefore, we require all methods to be able

to return a solution within a five-second limit for each

mapping during inference (green line in Fig. 4 (right)).

689

Limitations of Current Methods. From the above experi-

ment, we see that the primary issue of the MIP approach is

its poor time complexity, which prevents it from scaling to

industry-scale data centers with thousands of PMs and VMs.

To reduce the execution time of MIP solvers, some current

methods rely on estimating feasible solutions using propri-

etary heuristic methods and then using branch-and-cut tech-

niques [48] to identify optimal solutions. The hand-tuned

heuristics are based on human expertise to overcome the

scalability challenge by pruning the search space. Yet, the

heuristics have to be designed separately for different cluster

conditions in every data center as there are no universal

heuristics for all scenarios. For this reason, at ByteDance,

we use Partitioned Optimization Problems (POP) [47] that

randomly partition the rescheduling problem into several

subproblems and apply MIP to each subproblem. However,

as we show in Section 5.1, POP performs suboptimally under

the five-second limit. Instead, we aim to design a solution

that can match the performance of MIP, meet the latency re-

quirements, and does not require manual feature engineering

for different clusters.

3 Design of VMR2L
3.1 VM Rescheduling as an RL Problem
Deep RL has demonstrated remarkable abilities in many do-

mains [17, 57]. Without requiring pre-programmed heuristic

rules from experts, deep RL learns directly from data, but
its main drawback is the amount of training data required

[7, 16]. Additionally, rescheduling MNL VMs simultaneously

requires an action space of 𝑂 ((𝑀 · 𝑁)𝑀𝑁𝐿), which is too

large for the agent to learn effectively.

To address these challenges, we formulate the problem

such that a VMR request starts an episode, which involves

MNL steps. At each migration step, the action of the agent

(VMR
2
L) reschedules a single VM from its source PM to a

new destination PM based on the current PM and VM status.

Notably, the environment is deterministic – given the current

state and action, we can exactly know the next state and the

change in objective.

To this end, we design a simulator following the OpenAI

Gym environments [11] that allows us to train VMR
2
L offline

— we collect training samples from the data center, where

each sample is the status of all VMs and PMs when a VMR re-

quest is created. Each sample serves as the initial state of an

episode. For each step in the episode, given the current state

and the agent’s action, the simulator computes i) the next

state and ii) a reward based on the change in the reschedul-

ing objective, without the need to interact with the actual

data center. The agent in turn uses this reward signal to grad-

ually improve the rescheduling policy. At deployment time,

using neural networks as feature extractors allows VMR
2
L

to generalize to VM-PM mappings not encountered during

training without retraining or finetuning.

Given the above design, we now formalize the state, action,

and reward of the VMR
2
L framework.

State Representation.At each step, the state serves as input
to the agent, which is parameterized using neural networks.

The state input contains two sets of features. The first set is

the PM features, which contain four features for each of the

two NUMAs of each PM, specifically the remaining CPU and

memory resources, current FR, and fragment sizes. The sec-

ond set is the 14 VM features, which include requested CPU

and memory for each NUMA, fragment sizes, concatenated

with the source PM features. If a single NUMA is requested,

zeros are used as placeholders for the other NUMA. Each

feature dimension is min-max normalized.

Action Representation. Given the state at each step, the

agent outputs an action to migrate one VM. The action at

each step can be represented as a 2-tuple (𝑘, 𝑖), which means

to reschedule a VM𝑘 ∈ V from its source PM to a destination

PM 𝑖 ∈ P. Note that the source PM can be retrieved once we

select 𝑘 , so we do not include it in the action space.

Reward Representation. Reward represents the immediate

evaluation of the benefits each migration step brings under

the given state. The goal of VM rescheduling is to minimize

the FR across all PMs. While we could return the FR of all

PMs as a single final reward to the agent after finishing an

entire episode, it corresponds to a form of sparse reward

which is known to be difficult for training [53], as the agent

cannot easily attribute the drop in FR to a certain migration

step. Instead, we propose to generate dense rewards and

use the change in fragment sizes on the source PM and the

destination PM as an intermediate reward at each step. Since

we focus on 16-core CPUs, the maximum change in fragment

size on a single NUMA due to adding or removing a VM is

−15 to 15. We normalize the reward by dividing it with a

constant 𝑐 = 64 so that its range is naturally scaled down to

[− 15×4
64

, 15×4
64

] [30]. We calculate the rescaled fragment size

on both NUMAs by

𝑆𝑖 =

1∑︁
𝑗=0

(
𝑈̃𝑖, 𝑗%𝑋

)
÷ 𝑐, (8)

and define reward as

𝑅 = (𝑆before, src − 𝑆after, src) + (𝑆before, dest − 𝑆after, dest), (9)

where 𝑆before,· and 𝑆after,· are fragment changes before and

after the selected VM leaves (enters) the source (destination)

PM.

3.2 Two-Stage Framework
When the RL agent chooses to reschedule a VM 𝑘 from its

source PM to a destination PM 𝑖 , PM 𝑖 must have enough

available CPU and memory to host VM 𝑘 . In practical scenar-

ios, we may also consider additional constraints to ensure

service stability. For example, an application may require

some VMs to be hosted across different PMs, which can be

enforced in the form of a hard anti-affinity constraint.

690

State
VMi

VM Actor

Stage 1

Shared

PMs

VMs

All VMs Embeddings

All PMs Embeddings
Action

Embedding Network

Embedding Network

Shared

Figure 6. The first stage of VMR
2
L processes all VMs and

PMs via shared embedding networks, based on which the

VM actor selects a VM to be rescheduled.

State PMk

PM Actor

Stage 2
PM Mask

PMs

All PMs Embeddings

Action

Embedding Network

Shared

Selected VMi Embedding

Selected VMi from VM Actor

Figure 7. Once a candidate VM is selected by the VM actor,

VMR
2
L masks out all the PMs that cannot host the candidate

VM. The PM actor only accesses the selected VM, and then

selects a destination PM from the unmasked PMs.

Off-the-shelf RL models impose such hard constraints

typically by invoking a heavy penalty if an illegal action

is chosen, or by directly setting the probabilities for all il-

legal actions to be zero. As shown in Section 5.4, heavy

penalties can result in gradient instability and lead to an

inferior convergence rate. Furthermore, as the size of ac-

tion space is 𝑂 (𝑀 · 𝑁), masking all illegal actions is overly

time-consuming.

To better accommodate a variety of constraints, we lever-

age the characteristics of VMR and design a two-stage frame-

work that allows the action tuple to be generated sequentially.

In Stage 1 (Fig. 6), the VM actor selects the VM candidate to

be rescheduled. Once a candidate VM is selected, we can effi-

ciently mask out all the PMs that cannot host the candidate

VM. We then proceed to Stage 2 (Fig. 7), where the PM actor

selects an appropriate destination PM from the remaining

PMs. Such a framework has three benefits. First, it completely

avoids illegal actions for various types of constraints and

thus circumvents the necessity of heavy penalties. Second,

it dedicates two separate networks to select the VM candi-

date and the destination PM, which simplifies the VMR task

by decomposing the action tuple. Finally, when we select a

VM to reschedule, a considerable portion of the PMs cannot

meet its resource requirements. The proposed framework

can avoid exploration on these PMs and thus mitigate the

exploration challenge.

3.3 Feature Extraction with Sparse Attention
Scale to Many VMs & PMs. For effective rescheduling de-

cisions, VMR
2
L must extract meaningful representations of

the state observation, which include features of each individ-

ual PM and VM as well as their affiliations. As Fig. 1 implies,

the number of VMs can vary drastically even in the same

cluster. This implies that the size of the features at each time

step is also highly dynamic. To encode these features, one

option is to concatenate features from all VMs and PMs into

a long vector. However, this approach cannot handle an ar-

bitrary number of VMs as neural networks usually require

fixed-sized inputs, and it also requires a model with many

parameters that would be difficult to train.

Instead, we propose to share two small embedding net-

works across all VMs and PMs — one to process each PM’s

features and another one to process each VM’s features (Fig.

6 and 7). As such, the number of weight parameters is inde-
pendent of the number of machines in the system. This is

achieved via an attention-based transformer model [13, 61]

but tailored for rescheduling. Transformers have demon-

strated strong performances in Natural Language Processing

[15], Computer Vision [21], as well as combinatorial opti-

mization, such as in vector bin-packing [40, 65]. However,

compared to bin-packing, there is a notable difference in VM

rescheduling: we must choose from a set of VMs that have

already been assigned to PMs.

Tree-level Features. Consider a PM with 2 CPUs left. It

contains a VM with 4 CPUs and another VM with 2 CPUs.

Suppose a second PM has a fragment size of 8 while hosting

a VM with 8 CPUs. To minimize the total 16-core fragments,

an ideal approach would be to first remove the two VMs with

2 and 4 CPUs from the first PM, and then reassign the VM

with 8 CPUs from the second PM to the first PM. However,

if we merely include the source PM’s features in each of the

VM’s features and feed them into the vanilla transformer

model, there will not be sufficient information for the two

actors to take the above actions. Instead, each VM must be

aware of the other VMs that are hosted on the same PM,

which is not possible in the vanilla transformer model. In

fact, each PM can be viewed as a tree of depth one, where the

PM acts as the root node and the VMs it hosts act as the leaf

nodes. In order to allow every VM to recognize which other

VMs are hosted on the same PM, we propose to include an

additional stage of sparse local-attentionwithin each PM tree,

i.e., we only allow PMs and VMs to attend to each other if

and only if they belong to the same tree.

Architecture Overview.Wemodify the vanilla transformer

architecture as follows. The model is composed of several

attention blocks, where each block includes three stages as

shown in Fig. 8:

1. All PMs and VMs exchange information if they belong

to the same tree via sparse local-attention.

691

Figure 8. VM actor architecture with sparse local-attention

to capture the tree-level features.

2. Each PM attends to other PMs’ updated embeddings

and each VM attends to other VMs’ updated embed-

dings with self-attention.

3. The new VM embeddings attend to the new PM em-

beddings through VM-PM attention.

After the three stages, each machine is further processed

by two dense layers and layer norm [8]. The updated em-

beddings are then fed into the next block and the process

repeats. Finally, the VM embeddings from the last block are

linearly projected into a set of logits followed by Softmax

[10] to generate the probability of selecting each VM.

As for the PM actor, we adapt the vanilla encoder-decoder

transformer, since we can directly inject the relational infor-

mation by including the updated VM and PM embeddings

from the VM actor as input. We only feed in the selected

VM candidate to the encoder, while the decoder still takes

in all PMs. Additionally, we also add the VM-PM attention

score from stage 3 for the selected VM, since the score in-

dicates which PMs the VM actor attends to and encourages

the two actors to better coordinate. The output embeddings

of each PM is linearly projected into a logit. Based on the

selected VM, we mask out all the illegal PMs by setting their

logits to be −∞. The remaining logits are translated into the

probability of selecting each PM as the destination PM.

3.4 Risk-seeking Evaluation
VMR is distinct from general RL problems as it allows access

to a perfect world model with no uncertainties from the envi-

ronment. In other words, the simulator can directly compute

the final state and the corresponding objective value for a

given initial state and action sequence.

To take advantage of this distinction, we propose risk-
seeking evaluation, which is to sample multiple trajec-
tories during policy evaluation, and only deploy the
one with the highest reward. Given a trained VMR

2
L

checkpoint, to obtain varied trajectories during inference,

we sample actions from the learned policy, 𝜋 (·|𝑠), rather than
exclusively selecting the action with the highest probability.

Note that different migration trajectories can be generated

in parallel if multiple GPUs are available, without signifi-

cantly affecting the inference time. It is also worth mention-

ing that the concept of using the best-performing trajectory

can be further extended to the training process, known as

risk-seeking training [51].

Action Thresholding. It is important to note that the

learned policy is likely to differ from the optimal policy due

to approximation errors. In conventional RL applications,

this might not be an issue since only the action assigned with

the highest probability is chosen, allowing us to safely ignore

the approximation errors. However, in VMR, wemust sample

actions from 𝜋 (·|𝑠) in order to sample multiple trajectories.

Suppose actions with probability less than a threshold 𝜖 are

sub-optimal. Although these actions may not be executed

in a single period, they are likely to be performed at some

point in the entire trajectory.

Let 𝑝1 = min𝑠∈𝑆
∑

𝑎∈𝐴 𝜋𝜃 (𝑎 |𝑠) ·1{𝜋𝜃 (𝑎 |𝑠) ≤ 𝜖} be the low-
est total probability of sub-optimal actions over all states.

Then, the probability that the agent does not perform any

sub-optimal actions along𝑀𝑁𝐿 = 50 rescheduling steps is

upper bounded by (1 − 𝑝1)𝑀𝑁𝐿 ≤ 𝑒−𝑀𝑁𝐿 ·𝑝1
. If 𝑝1 = 0.005,

then 23% of the trajectories we sample will contain sub-

optimal actions. Therefore, at each migration step, the VM

actor computes the probability of selecting each VM candi-

date, and we calculate a threshold based on the quantile of all

VM probabilities. We then mask out all VM candidates that

are assigned with probabilities falling below the threshold,

and similarly for PMs.

4 Implementation
Datasets.We collect two datasets

9
from real industry-scaled

data centers – a Medium dataset with up to 2089 VMs and

280 PMs, and a Large dataset with up to 4546 VMs and 1176

PMs
10
. Each dataset contains 4400 mappings (or instances),

which represent the assignments of VMs to PMs at vari-

ous points in time. To release these datasets while ensuring

confidentiality of business operations and avoiding potential

train/test leakage, we anonymize each mapping by randomly

removing some of the existing VMs and redeploy the VMs to

any PMs that they can fit. We split the 4400 mappings into

4000 for training, 200 for validation, and 200 for testing. Our

designed Gym simulator directly supports the dataset for-

mat. To our knowledge, these are the largest datasets for VM

rescheduling based on real traces, and shall be very useful

to the community.

Algorithm Specifics.We implement VMR
2
L based on the

CleanRL framework [35] using PPO as the backbone [55].

9
While a data center might have over 10,000 PMs, they are typically orga-

nized into clusters, each consisting of hundreds of PMs, for improved fault

isolation and easier management. Migrations usually occur within each

cluster. Our Large dataset is already larger than the size of a typical cluster.

See Section 1.

10
Note that the Large dataset has a lower VM to PM ratio, since it has larger

average VM sizes. The datasets are collected from real clusters, which are

managed by different service teams. This reflects the operational needs of

different services.

692

VMR
2
L contains about 8.5K lines of Python code. The frame-

work is implemented using PyTorch [24]. The number of

model parameters is independent of the number of VMs or

PMs, allowing it to scale to large data centers. VMR
2
L is

lightweight – the saved checkpoint has a size less than 2 MB.

Experiment Setup.All models are trained on a Linux server

using eight CPU cores (Intel Xeon E5) and one GPU (NVIDIA

RTX 3090) [42, 43]. VMR
2
L takes 92 hours to train, and 1.1

seconds to solve each mapping. We report the average over 3-

5 runs with different random seeds and show the confidence

intervals in the convergence plots.

5 Evaluation
We conduct extensive experiments to answer:

• How far is VMR
2
L from the optimal solution? (§ 5.2)

• How much gain does each component provide? (§ 5.3)

• How does the two-stage framework allow VMR
2
L to accom-

modate different constraints: i) constraints on the original

Medium dataset, ii) muti-dimensional resource constraints,

and iii) service affinity constraints? (§ 5.4)

• Can VMR
2
L optimize i) an objective other than FR, ii) a

mixed objective defined with multiple resource types? (§ 5.5)
• How well does VMR

2
L generalize to i) workloads different

from the train distribution, ii) MNLs that are different at

inference time, iii) more PMs and VMs, iv) different clusters?

Different Workloads with Different MNLs, and (v) varying

workloads with different MNLs?(§ 5.6)

• Is A Larger Cluster More Difficult for VMR
2
L to Learn? (§

5.7)

• Where do the improvements come from intuitively? (§ 5.8)

5.1 Existing Baseline Algorithms
As later discussed in Section 6, existing baselines can be sum-

marized into six categories: heuristics (e.g., filtering-based

heuristic, 𝛼-VBPP), optimization algorithms (e.g., MIP), ap-

proximate algorithms (e.g., POP), search-based algorithms

(e.g., MCTS), deep learning-based (e.g., Decima), and hybrid

methods (e.g., NeuPlan). We compare with at least one rep-

resentative algorithm from each category.

MIP Algorithm: introduced in Section 2.1.

Filtering-Based Heuristic Algorithm (HA): introduced
in Section 2.1.

Vector Bin Packing Problem (𝛼-VBPP):We generalize the

VBPP [49] algorithm for initial scheduling to rescheduling.

We first divide the entire episode into𝑀𝑁𝐿/𝛼 stages. During

each stage, we greedily remove 𝛼 number of VMs that lead

to the most fragments, and then apply VBPP to treat them

as incoming VMs. We carefully tune 𝛼 (10 in our case) to

achieve the best FR reduction.

Partitioned Optimization Problems (POP) [47]: It solves
the optimization problem formulated in Section 2.1 by ran-

domly splitting the problem into subproblems (each contain-

ing a subset of VMs and PMs), applying anMIP solver to each

subproblem, and finally combining the results into a global

solution. We choose the smallest number of subproblems (16

in our case) that allows POP to meet the five-second limit.

Monte-Carlo Tree Search (MCTS) [67]: As traditional
search based methods need to perform multiple rollouts

during inference time to achieve a good performance, we

use DDTS [67] to prune the search space.

Decima [44]: Decima uses a graph neural network to en-

code the VM and PM information and trains using deep RL.

Decima balances the size of the action space and the number

of actions required by decomposing VM rescheduling deci-

sions into a two-dimensional action, which outputs i) the

VM that needs to migrate, and ii) an upper number of PM

subsets to choose as the destination.

NeuPlan [66]: In the first stage, an RL agent takes in the

problem as a graph and generates the first fewVMmigrations

to prune the search space. In the second stage, it uses an MIP

solver for the remaining MNLs. A relax factor 𝛽 (30 in our

case) is used to control the size of the MNL space to be

explored by MIP.

5.2 Overall Performance
Fig. 9 shows the FR and inference latency of all methods on

the Medium dataset. VMR
2
L achieves a lower FR compared

to all baselines. Notably, VMR
2
L is merely 2.86% behind

the optimal MIP solution (0.2941 vs. 0.2859) when 𝑀𝑁𝐿 =

50. Meanwhile, VMR
2
L can generate one trajectory within

1.1s, while MIP requires 50.55 minutes to provide the near-

optimal solution. It is worth noting that with higher MNLs,

the performance gap between VMR
2
L and MIP does not

increase as significantly as compared to other baselines.

𝛼-VBPP only removes 𝛼 number of the worst VMs for

each stage based on a single timestep, failing to consider

future opportunities to replace them back, which leads to its

inferior performance. POP fails to achieve good performance

since it still relies on MIPs to solve each subproblem. To meet

the second-level latency requirement, we must divide the

problem into many subproblems, causing its solutions to be

only locally optimal. On the other hand, Decima reduces the

large action space by limiting the PM actor to only select

from a subset of PMs, but the subsampling of PMs is com-

pletely random, as opposed to our solution. While MCTS

with DDTS uses neural networks to prune the search space,

it still requires a significant number of rollouts to achieve

stable performance. Lastly, NeuPlan also fails to deliver a

satisfying solution for high MNLs, since it can only use MIP

to solve a small number of steps in order to meet the latency

requirement. Although HA/MCTS achieves competitive re-

sults on smaller MNLs (MNL ≤ 20), repeating HA/MCTS

with smaller MNLs multiple times, as done by 𝛼-VBPP, per-

forms poorly on larger MNLs (e.g., MNL=50) because it tends

to get stuck in local optima at each individual stage.

693

Figure 9. Fragment rate (left) and inference time (right) of VMR
2
L compared with baselines at different MNLs.

Figure 10.Ablation on Sparse Attention. Figure 11. VMs probability distribution. Figure 12. Risk-seeking Evaluation.

To summarize, algorithms that involve MIP or searching

often fail to deliver a satisfying solution under the strict la-

tency requirement. Heuristic methods are fast but are also

suboptimal. Deep learning-based methods can meet the la-

tency requirement since the models do not need to be re-

trained at inference time, but are difficult to train without

the set of customized techniques we proposed for VMR. We

provide a case study and a tool to visualize where the im-

provements of VMR
2
L come from in Section 5.8.

5.3 Performance Decomposition of VMR2L
We conduct an ablation study usingMNL = 50 on theMedium

dataset. In summary, FR performance reduces 16.46% with-

out the two-stage framework
11
, and improves from 0.3090

and 0.3079 to 0.2941 when sparse attention and risk-seeking

are added, respectively. Recall that the near-optimal MIP so-

lution is 0.2859, which means that Sparse Attention achieves

0.3090−0.2941
0.3090−0.2859 = 64.5%, and Risk-Seeking achieves 0.3079−0.2941

0.3079−0.2859 =

62.7% of the potential room for improvement.

Sparse Attention.We compare against two baselines. w/o
Attention uses a multilayer perceptron (MLP) [52] as the

feature extraction module. MLP concatenates features of all

PMs and VMs and thus requires much more trainable pa-

rameters that scale linearly with the number of machines

in the system. Vanilla Attention has fewer parameters as it

shares a single small embedding network for all PMs and

a second small embedding network for all VMs, but it uses

the original encoder-decoder transformer [61, 64] without

attending to tree-level features. Fig. 10 shows that MLP fails

to converge due to its large number of trainable parameters.

11
The results for the two-stage framework are shown in Section 5.4.

As training progresses, Sparse Attention learns to capture re-

lational features unique to VMR and gradually outperforms

Vanilla Attention. We show a case study of how such rela-

tional information can benefit VMR intuitively in Section

5.8.

Risk-Seeking Evaluation. At deployment time, given a

trained VMR
2
L checkpoint and an initial vm-pm state, we

generate multiple migration plans. We then leverage our

simulator to calculate the resulting objective under each

plan and only deploy the plan that yields the best outcome.

Recall that VMR
2
L takes 1.1s to generate each trajectory,

and suppose we have 8 GPUs to run generations in parallel,

generating 16 trajectories would take 2.2s.

To avoid sampling suboptimal actions in the trajectory, we

mask out PMs and VMs that are assigned low probabilities.

We plot the distribution of probabilities assigned to different

VMs in the validation set in Fig. 11. Notice that most VMs are

assigned low probabilities. In fact, fewer than 0.8% of VMs

have a greater than 1% chance of being selected. Therefore,

we compute a quantile ∈ {0.95, 0.98, 0.99, 0.995} for all VMs

and all PMs at each step and mask out all machines that have

probabilities that fall below the corresponding threshold.

We perform a grid search on the two quantiles using the

validation set and apply the best combination to the test

set. Fig. 12 shows the final FR decreases when we sample

more trajectories, and the FR decreases further after we apply

thresholding.

5.4 Different Constraints with Two-Stage
Framework

MoreResource Constraints. To analyze how the two-stage

framework supports different constraints, we compare it

with two baselines: i) Penalty: a penalty of −5 is given if the

694

Figure 13. Constraints on Medium (left) and Multi-Resource

(right).

Figure 14. MNL performance under different FR goals.

Table 2. FR under different affinity constraint levels.

Aff. Level 0 1 2 3 4 8

Aff. Ratio 0 1.12% 1.86% 3.46% 6.50% 38.3%

VMR
2
L 0.3032 0.3029 0.3034 0.3048 0.3045 0.3306

MIP 0.2859 0.2860 0.2860 0.2862 0.2864 OOT

agent takes an illegal action, and ii) Full-Mask: the VM can-

didate and the PM destination are generated simultaneously,

with all illegal pairs having probabilities of zero.

In addition to the Medium dataset, we consider traces

from an additional data center that is smaller but has more

complicated multi-dimensional resource constraints with

more VM and PM types. The newMulti-Resource dataset has
two PM types — one has 88 CPUs and 256 GB of memory,

and the other has 128 CPUs and 364 GB of memory. The

regular VM types in Table 1 always have a CPU-memory

ratio of 1 : 2. For memory-intensive applications, a user

might request additional memory, and the CPU-memory

ratio can increase up to 1 : 8.

As we can see from Fig. 13, Penalty suffers from a slower

convergence to a sub-optimal level, since the large nega-

tive penalties required to eliminate illegal actions tend to

dominate the gradient signal, especially during early stages

of training. Full-Mask does not converge under both con-

straint settings, since its action space is the product of the

number of VMs and the number of PMs, which leads to poor

exploration. In comparison, Two-Stage decomposes the ac-

tion space by designating stage 1 to focus on the set of VM

candidates and stage 2 to focus on the set of PM destinations,

resulting in much faster convergence.

Service Constraints. We consider a practical constraint

in the form of a hard anti-affinity, where a VM cannot be

placed on the same PM with some other selected VMs. It

can i) prevent resource-intensive VMs to be hosted together,

which leads to performance interference, and ii) support

critical services that require backup VMs in case of a PM

failure. To enforce anti-affinity, we mask out all PMs that

host conflicting VMs in stage 2 after selecting a VM candidate

in stage 1. We typically observe an affinity ratio requirement

to be under 5% in real-world traces. Affinity ratio means

the average percentage of VMs that a given VM conflicts

with. We synthesize the service anti-affinity constraint on

the Medium dataset.

In Table 2, we see that VMR
2
L maintains consistent per-

formance under typical affinity ratio levels. To demonstrate

the robustness of VMR
2
L to extreme constraint levels, we

further evaluate it when the affinity ratio surges to 38.3%

and see that VMR
2
L is still able to achieve a reasonable FR.

5.5 Objectives Generalization
5.5.1 Minimize MNL Given FR Goals. VMR

2
L’s flexi-

bility enables it to learn different policies depending on the

high-level objective. We now consider a new objective: min-

imize the number of VM migrations to reach a given FR

goal, to reduce migration costs. To support this objective, we

simply modify the original reward function (Equation 9) as

follows:

𝑅𝑓 𝑟 = (𝑆before, src − 𝑆after, src) + (𝑆before, dest − 𝑆after, dest), (10)

𝑅 =

{
−1 + 𝑅𝑓 𝑟 , 𝐹𝑅 > 𝐹𝑅Goal,

10 + 𝑅𝑓 𝑟 , 𝐹𝑅 ≤ 𝐹𝑅Goal.
(11)

On top of the original reward, we add a penalty of -1 if the

FR is above the goal as it indicates additional VM migrations

are required, and a bonus of +10 if VMR
2
L reaches the goal.

In Fig. 14, the top subfigure shows the number of migration

steps, while the bottom subfigure shows the achieved FR,

both sharing the x-axis as different FR goals. On average,

MIP and VMR
2
L achieve 14.77% and 11.11% fewer MNLs

than HA, respectively. VMR
2
L requires only 3.66% more VM

migrations, but with second-level solution time.

5.5.2 Mixed Objective (i): Multi-VM-Type FR. What

if a cluster wants to optimize for multiple VM types, such

as 16xlarge VMs in addition to the original 4xlarge VMs?

Recall that 4xlarge requires 16 cores on a single NUMA,

while 16xlarge requires 64 cores deployed across two NU-

MAs, introducing additional complexities. Let 𝐹𝑅16 denote

16-core FR, and 𝐹𝑅64 denote 64-core FR. We optimize for the

objectives as the convex combinations of 𝐹𝑅16 and 𝐹𝑅64:

695

Figure 15. CPU usage on PMs under

different workloads.

Figure 16. FR gap between VMR
2
L

and VMR
2
L SEP.

Figure 17. Ratio of potential FR achieved

when deploying on clusters with different

numbers of PMs.

Table 3. Mixed objective (i) with 𝐹𝑅16 and 𝐹𝑅64.

𝜆 0 0.2 0.4 0.6 0.8 1

VMR2L 𝐹𝑅16 0.2941 0.3079 0.3413 0.4086 0.4214 0.4532

𝐹𝑅64 0.9478 0.9263 0.6960 0.5900 0.5603 0.5473

Obj𝜆 0.2941 0.4316 0.4832 0.5174 0.5325 0.5473

POP 𝐹𝑅16 0.3447 0.3650 0.3971 0.3992 0.3991 0.5215

𝐹𝑅64 0.9836 0.8235 0.7312 0.7280 0.7278 0.7222

Obj𝜆 0.3447 0.4567 0.5308 0.5964 0.6621 0.7222

Obj𝜆 = 𝜆 · 𝐹𝑅64 + (1 − 𝜆) · 𝐹𝑅16, (12)

where 𝜆 is a predefined parameter based on which VM

types to prioritize. Table 3 presents the results when we op-

timize for 𝜆 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} on the Multi-Resource
dataset introduced in Section 5.4. For both methods, as 𝜆

increases, some 𝐹𝑅16 has to be sacrificed when the objec-

tive emphasizes more on 𝐹𝑅64. Overall, in terms of Obj𝜆 , we

see that VMR
2
L consistently outperforms POP under differ-

ent 𝜆’s. Note that when 𝜆 = 0.2, Obj𝜆 is lower for VMR
2
L,

but POP achieves lower 𝐹𝑅64. This is because to minimize

a mixed objective, different algorithms may choose to fo-

cus on each individual objective differently, even under the

same 𝜆. Therefore, individual objectives might not be directly

comparable.

5.5.3 MixedObjective (ii):Multi-Resource-Type FR. In
some clusters, the optimization target can be defined in terms

of multiple resource types. We show that VMR
2
L is capable

of handling such a multi-dimensional objective by using 16-

core CPU fragments and 64-GB Memory fragments (denoted

as𝑀𝑒𝑚64) as an example.𝑀𝑒𝑚64 refers to a discrete resource

fragment representing 64 GB of memory capacity. The objec-

tive function can be written in a form similar to Equation 12.

We show the results on the Multi-Resource dataset in Table

4. VMR
2
L still consistently outperforms POP in terms of the

mixed objective. Another interesting observation is when

we increase 𝜆 from 0 to 0.2, both 𝐹𝑅16 and𝑀𝑒𝑚64 decreased

for VMR
2
L. We hypothesize that rewarding the model for

additional objectives helps to make the reward less sparse,

thereby further stabilizing RL training [54].

Table 4. Mixed objective (ii) with 𝐹𝑅16 and𝑀𝑒𝑚64.

𝜆 0 0.2 0.4 0.6 0.8 1

VMR2L 𝐹𝑅16 0.2709 0.2700 0.2872 0.3071 0.3127 0.3182

𝑀𝑒𝑚64 0.3032 0.2955 0.2695 0.2480 0.2490 0.2449

Obj𝜆 0.2709 0.2751 0.2802 0.2716 0.2617 0.2449

POP 𝐹𝑅16 0.2808 0.2809 0.2843 0.3055 0.3073 0.4464

𝑀𝑒𝑚64 0.3107 0.2832 0.2762 0.2559 0.2550 0.2537

Obj𝜆 0.2808 0.2813 0.2811 0.2757 0.2655 0.2537

Table 5. Generalization to abnormal workloads. POP is a

baseline algorithm for large-scale resource allocation [47].

Methods L (MNL=100) M (MNL=100) H (MNL=50)

HA 0.256(-2.7%) 0.276(-8.0%) 0.387(-10.9%)

VMR
2
L (L) 0.237(+4.8%) 0.261(-2.7%) 0.424(-18.6%)

VMR
2
L (M) 0.239(+4.0%) 0.238(+6.3%) 0.422(-18.2%)

VMR
2
L (H) 0.243(+2.4%) 0.248(+2.4%) 0.303(+12.2%)

VMR
2
L (L,H) 0.237(+4.8%) 0.237(+6.7%) 0.326(+5.5%)

POP 0.249 0.254 0.345

5.6 Generalization and Scalability of VMR2L
5.6.1 Abnormal Workloads. It is well-known that com-

mon DRL applications often experience performance degra-

dation due to distribution shifts [39]. However, in real-world

service traces, there are periods, such as during deadlines

or holidays, where workloads (defined as the percentage of

available CPUs on PMs) deviate significantly from the norm.

To assess whether VMR
2
L can adapt to these abnormal work-

load levels, we gathered two additional datasets representing

Low(L) and Middle(M) workloads. In our study, the medium

dataset represents High(H) workloads. The workload distri-

butions of each train mapping from the three datasets are

shown in Fig. 15. Note that these three datasets have strictly

non-overlapping workload distributions, i.e., we cannot find

a training sample from High that has a workload similar to

Middle or Low.
We train VMR

2
L on one or mixed workload datasets and

evaluate the FR on each individual workload level. The re-

sults are summarized in Table 5. For example, (L,H) means

that we train VMR
2
L on both Low and High datasets. We

set 𝑀𝑁𝐿 = 100 for L and M since the FR difference is low

until MNL increases to 100. As MIP runs out of time due

to the larger MNL used on L and M, we choose POP as the

696

Figure 18. FR and time performance on the Large dataset.

standard baseline since it is easy to tune and exhibits strong

FR performances. First, we see that VMR
2
L outperforms the

two baselines when trained on the same workload level as

test. When VMR
2
L trains with workloads smaller than the

test workload, VMR
2
L suffers from performance degrada-

tion. Intuitively, a high workload requires the agent to create

available resources by first removing existing VMs away

from the destination PM, but this action is less common on

lower workloads and thus cannot be effectively learned.

Remarkably, when trained on both L and H, VMR
2
L can

learn a general policy and perform the best on M without
ever experiencing middle workloads. Thus, we recommend

end-users to train VMR
2
L with a combination of high and

lowworkloads from their data centers. This allows VMR
2
L to

bridge gaps in the training data and better generalize when

encountering abnormal workloads.

5.6.2 Generalizing to Different MNLs. In practical sce-

narios, MNL often fluctuates due to varying business needs,

such as when in the day VMR is performed. We show that

training a single VMR
2
L agent with 𝑀𝑁𝐿 = 50 can yield

effective results across a range of MNLs ∈ {10, 20, 30, 40, 50}.
To compare, we train a separate VMR

2
L agent for each MNL,

denoted as VMR
2
L SEP. As shown in Fig. 16, VMR

2
L performs

only marginally worse than VMR
2
L SEP with an average FR

performance gap of 1.16%. This suggests that the VMR
2
L

agent trained with a large MNL can be readily applied to

tasks with smaller MNLs. It avoids the overhead of maintain-

ing a separate VMR
2
L agent for each MNL.

5.6.3 Generalizing to Different Clusters. We evaluate

the generalization ability of the VMR
2
L when trained on

a specific cluster and deployed to different clusters. Specif-

ically, we use the VMR
2
L model trained on the Medium

dataset, which contains 280 PMs. To simulate varying cluster

sizes, we randomly modify the Medium dataset by adding or

removing PMs, generating a total of 100 different mappings.

Fig. 17 illustrates the potential FR achieved by VMR
2
L on

clusters with different numbers of PMs. The potential FR is

defined as the difference between the initial FR and the FR

achieved by MIP. Our results show that VMR
2
L maintains

nearly the same performance when deployed on clusters

with a PM count that varies by less than 10%. Performance

remains robust even with variations of 10% to 20%, achieving

(a) FR on the low workload. (b) FR on the medium workload.

Figure 19. FR on different workloads.

over 95% of the potential FR. However, when the number of

PMs differs bymore than 20%, a slight decline in performance

is observed. Even in this scenario, VMR
2
L still significantly

outperforms POP, which achieves only around 78% and has

to be retrained on each cluster.

5.6.4 More VMs & PMs. To see how VMR
2
L scales to a

larger cluster, we conduct experiments on the Large dataset

with 4546 VMs and 1176 PMs. Fig. 18 shows the performance

against different baselines when MNL varies from 50 to 200.

MIP is not included here since it takes more than an hour to

solve a single migration path. Similar to the Medium dataset,

VMR
2
L achieves lower FRs than the baselines, with an infer-

ence time of 3.8s to solve one mapping.

5.6.5 Different Workloads with Different MNLs. We

evaluate VMR
2
L with varying workloads under different

MNLs. We set MNL=100 when evaluating the Low and Mid-

dle workload datasets since the FR difference is low until we

increase MNL to 100. From Fig. 19, we can see HA, POP, and

VMR
2
L can all decrease FR at MNL=50. However, HA fails

to decrease FR at MNL=100. Instead, VMR
2
L achieves 7.42%

and 4.8% lower FR on the low workload, and 13.77% and

6.3% lower FR on the middle workload compared to HA and

POP, respectively. These results demonstrate that VMR
2
L is

capable of handling varying workloads.

5.7 Is A Larger Cluster More Difficult for VMR2L to
Learn?

Recall that the Medium dataset has up to 2089 VMs and 280

PMs, and the Large dataset has up to 4546 VMs and 1176 PMs.

We demonstrate that larger clusters are not inherently more

difficult to train in VMR
2
L by comparing the convergence

speeds on the Medium and Large datasets. The results are

shown in Fig. 20(a). Since the initial and optimal FR values

are different between the two datasets, we use a dual y-

axis to plot the convergence curves. At first glance, it may

seem that convergence is slower on the Medium dataset

(blue) compared to the Large dataset (red), which might seem

counterintuitive given the higher number of VMs and PMs

in the latter. However, we hypothesize that this is because

there are smaller VMs in the Large dataset. Since smaller

697

(a) Including the initial stage.

(b) After the initial stage.

Figure 20. Convergence speed on different cluster sizes.

VMs are easier to move around, it is easier to learn a simple

policy that can effectively reduce these fragments in the

initial stages. To test this, we replot the convergence curves

in Fig. 20(b), excluding the initial stage where most of the

“low-hanging fruits” have been picked. After the initial stage,

VMR
2
L converges slightly faster on the medium dataset, but

the difference is very minimal and should not pose an issue.

Note that since we use a dual y-axis, the absolute slopes

are no longer comparable, but instead we shall focus on the

similar linear downward trend in both datasets.

5.8 Intuitions Behind VMR2L: A Case Study
Intuitively, where do the improvements of VMR

2
L come

from? To answer this question, we build a tool to visualize

which VM is being migrated at each step. We randomly

select one mapping from 200 test mappings on the Medium

dataset and analyze howVMR
2
L reduces FRwhen𝑀𝑁𝐿 = 50.

VMR
2
L optimizes FR from a global perspective. In Fig. 21,

we analyze the three PMs involved during steps 38-40. Each

PM consists of two NUMA nodes, represented by the two

vertically stacked bars. Different colors indicate the total

allocated size of each VM type on a NUMA. For example, in

the first NUMA at step 38, the orange section has a total size

of 28 cores. Since an xlarge VM requires 4 cores, this implies

that there are seven xlarge VMs occupying that space. The

gray regions represent unused resources (free space).

Figure 21. VM-PM Migration Details. Each equal-sized rec-

tangle represents a NUMAnodewithin a PM. Different colors

indicate the total allocated size of a VM type on each NUMA.

At step 38, VMR
2
L removes a 4-core VM (from the orange

section) from the top PM, which eliminates fragmentation

on the destination NUMA but temporarily creates four frag-

ments on the source NUMA. This results in a net reward of

zero at this step. At step 39, the agent identifies a second

4-core VM on the source NUMA and migrates it to another

PM, effectively eliminating all remaining fragments on both

source and destination NUMAs. The reason the color dis-

tribution appears to change after migration is that the total

allocated size of VMs on a NUMA is updated after each

migration. The individual VMs remain the same, but their

placement alters the total distribution of resources on each

NUMA. This process highlights how sparse attention enables

the agent to recognize multiple rescheduling opportunities

and make globally optimal decisions for reducing FR across

the entire system. This example shows that VMR
2
L is able to

sacrifice immediate rewards for long-term FR performance

due to the cumulative reward design in RL.

6 Related Work
Connections to Bin Packing. The use of optimized place-

ment mechanisms proved to be successful in a broad set of

use cases, including production quality scenarios [6] as well

as transportation logistics [12, 22, 34, 63]. A typical solution

exploits heuristics based on bin packing [49]. In fact, VM

placement can be modeled as a bin-packing problem, where

VMs and PMs are objects and bins, respectively. Bin pack-

ing typically involves packing a set of items into fixed-sized

bins such that the number of bins required [12] or the total

surface area is minimized [22, 34]. However, there are two

notable differences. First, the problem of VM rescheduling

698

concerns adjusting an initial assignment of VMs to PMs. On

the other hand, rebalancing items already packed in bins has

received little attention in the context of other bin-packing

applications. A critical aspect of the initial assignment is the

current VM affiliations, which existing bin-packing solutions

often do not consider but we show is critical to VMR via tree-
level features. Second, the total number of VMs and PMs in a

data center can easily go into the range of several thousand

or more [63] and is far more than the typical scale of bin

packing problems, which typically involve no more than a

few hundred items [41, 67].

RL for Optimization Problems. RL has been recently in-

troduced to solve optimization problems, e.g., building ML

compilers and optimizing neural network architectures [29].

In particular, RL is used to select branching variables or find

cutting planes in the Branch-and-cut method [23, 25, 26]. Be-

sides, RL can also be applied to existing heuristics for MIPs

to further increase the quality of solutions [9, 58]. In fact,

most state-of-the-art solutions for optimization problems

often involve MIP or searching [66], but these methods are

not directly appropriate for the VM rescheduling task due

to their poor computation complexity. Although they are

designed to accelerate MIPs, as shown in Section 5.2 even a

state-of-the-art technique such as POP [47] fails to deliver

a satisfying solution within the second-level time limits of

the VM rescheduling task. While learning-based methods

[44] can meet the latency requirement by leveraging their

generalization ability at deployment to avoid retraining, they

do not involve techniques that are tailored for VMR, which

we propose in VMR
2
L.

7 Discussion
Noisy Neighbors. A challenge in rescheduling is perfor-

mance interference caused by noisy neighbors, which are

VMs that disproportionately consume shared resources, lead-

ing to degradation for other VMs on the same PM. Our ap-

proach can address this issue by incorporatingmulti-resource

constraints or hard anti-affinity policies (Section 5.4), ensur-

ing that certain VMs are not hosted on the same PM to avoid

resource contention. However, these strategies require prior

knowledge of the resource profiles of the VMs involved and

the ability to isolate resources accordingly. Future work may

consider resource reservation to ensure dedicated resources

without interference. Additionally, developing predictive

models for workload characterization can help anticipate

resource demands and interference patterns of different VMs,

enabling more dynamic workload management.

Adapting to New data. Section 5.6 shows VMR
2
L has

strong generalization ability, learning a policy that performs

well across different workload levels not present in the train-

ing data without retraining or even finetuning. It also gen-

eralizes to different MNLs by training a single agent with

a larger MNL and applying it across smaller MNLs, avoid-

ing the need for separate agents (Section 5.6.2). If we see

large distribution shifts or performance drops, VMR
2
L read-

ily supports off-the-shelf finetuning methods (e.g., top-layer

finetuning [32], adding adapters [31], LoRA [33]).

Efficient Training in Deterministic Environments.
VM rescheduling differs from typical RL tasks [18, 19] that re-

quire large datasets due to stochastic transitions. In contrast,

VM rescheduling involves deterministic transitions, where

the outcome is fully predictable given a specific state and

action. We only require the initial VM mappings for train-

ing, making it more data-efficient. In light of this, our work

introduces a simulator that enables offline training, fully sim-

ulating the rescheduling environment and allowing agents

to learn policies without requiring extensive real-world data.

Broader Insights. While immediate application is sched-

uling, many system problems share the same underlying

principles (e.g., large-scale, no environmental uncertainties,

and strict latency requirements). Our RL formulation, and

techniques such as action decomposition and risk-seeking

evaluation, are transferable and could inspire other system

applications facing similar challenges.

8 Conclusion
Compared to conventional bin-packing applications, VM

rescheduling presents unique challenges due to the expand-

ing size of data centers. It must handle a large volume of

VM requests while meeting a second-level inference speed,

given the dynamic nature of VM states. As such, we pro-

pose VMR
2
L, a deep RL approach designed specifically for

VM rescheduling: i) a two-stage framework to seamlessly

accommodate different service constraints, ii) a sparse atten-

tion module to better capture local VM-PM relations, and iii)

risk-seeking evaluation to offer a better trade-off between

speed and performance. Future work includes optimizing

for best-case performance during training [51], which could

better align with our risk-seeking evaluation pipeline. Addi-

tionally, incorporating the estimated remaining runtime of

each VM and future VM demands [44] could further enhance

performance. Predicting resource usage patterns may also

help prevent performance inference by VMs hosted on the

same PM. Furthermore, our current action design requires

the agent to migrate VMs one at a time. Permitting the agent

to swap multiple VMs simultaneously could simplify the

identification of a feasible migration path. Overall, we hope

our released datasets and RL environment will facilitate fu-

ture research in this direction.

Acknowledgement
Wewould like to thank our shepherdMangpo Phothilimthana

and anonymous EuroSys reviewers for their valuable com-

ments and insightful feedback.

699

References
[1] Cluster design in data center. https://core.vmware.com/resource/vsan-

cluster-design-large-clusters-versus-small-clusters#section1.
[2] Cplex optimizer. https://www.ibm.com/analytics/cplex-optimizer.
[3] Gurobi solver. https://www.gurobi.com/.
[4] Kubernetes scheduler. https://kubernetes.io/docs/concepts/

scheduling-eviction/kube-scheduler/.
[5] Numa architecture platforms. https://uefi.org/htmlspecs/ACPI_Spec_

6_4_html/17_NUMA_Architecture_Platforms/NUMA_Architecture_
Platforms.html. Accessed: 2024-10-05.

[6] Ahmad, R. W., Gani, A., Hamid, S. H. A., Shiraz, M., Yousafzai,

A., and Xia, F. A survey on virtual machine migration and server

consolidation frameworks for cloud data centers. Journal of network
and computer applications 52 (2015), 11–25.

[7] An, Z., Ding, X., and Du,W. Go beyond black-box policies: Rethinking

the design of learning agent for interpretable and verifiable hvac con-

trol. In Proceedings of the 61st ACM/IEEE Design Automation Conference
(2024), pp. 1–6.

[8] Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization, 2016.

[9] Barrett, T., Clements,W., Foerster, J., and Lvovsky, A. Exploratory

combinatorial optimization with reinforcement learning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence (2020), vol. 34,
pp. 3243–3250.

[10] Bishop, C. M. Pattern Recognition and Machine Learning (Information
Science and Statistics), 1 ed. Springer, 2007.

[11] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman,

J., Tang, J., and Zaremba, W. Openai gym, 2016.

[12] Cai, Q., Hang, W., Mirhoseini, A., Tucker, G., Wang, J., and Wei,

W. Reinforcement learning driven heuristic optimization. Workshop
on Deep Reinforcement Learning for Knowledge Discovery (DRL4KDD)
abs/1906.06639 (2019).

[13] Chen, Y., Yang, K., An, Z., Holder, B., Paloutzian, L., Bali, K. M.,

and Du, W. Marlp: Time-series forecasting control for agricultural

managed aquifer recharge. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (2024).

[14] Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach, C.,

Pratt, I., and Warfield, A. Live migration of virtual machines. In

Proceedings of the 2nd Conference on Symposium on Networked Systems
Design & Implementation - Volume 2 (Berkeley, CA, USA, 2005), USENIX
Association, pp. 273–286.

[15] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-

training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805v2 (2018).
[16] Ding, X., An, Z., Rathee, A., and Du, W. A safe and data-efficient

model-based reinforcement learning system for hvac control. IEEE
Internet of Things Journal (2025).

[17] Ding, X., Cerpa, A., and Du, W. Exploring deep reinforcement learn-

ing for holistic smart building control. ACM Transactions on Sensor
Networks 20, 3 (2024), 1–28.

[18] Ding, X., Cerpa, A., and Du, W. Multi-zone hvac control with model-

based deep reinforcement learning. IEEE Transactions on Automation
Science and Engineering (2024).

[19] Ding, X., and Du, W. Optimizing irrigation efficiency using deep rein-

forcement learning in the field. ACM Transactions on Sensor Networks
20, 4 (2024), 1–34.

[20] Ding, X., Zhang, Y., Chen, B., Ying, D., Zhang, T., Chen, J., Zhang,

L., Cerpa, A., and Du, W. Vmr2l: Virtual machines rescheduling using

reinforcement learning in data centers, 2023.

[21] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai,

X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G.,

Gelly, S., Uszkoreit, J., and Houlsby, N. An image is worth 16x16

words: Transformers for image recognition at scale. In International
Conference on Learning Representations (2021).

[22] Duan, L., Hu, H., Qian, Y., Gong, Y., Zhang, X., Wei, J., and Xu, Y.

A multi-task selected learning approach for solving 3d flexible bin

packing problem. In Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems (Richland, SC, 2019),
AAMAS ’19, International Foundation for Autonomous Agents and

Multiagent Systems, p. 1386–1394.

[23] Etheve, M., Alès, Z., Bissuel, C., Juan, O., and Kedad-Sidhoum, S.

Reinforcement learning for variable selection in a branch and bound

algorithm. In International Conference on Integration of Constraint
Programming, Artificial Intelligence, and Operations Research (2020),

Springer, pp. 176–185.

[24] Facebook AI Research. Pytorch: An open source machine learning

framework. https://pytorch.org/, 2019. Accessed: April 23, 2023.
[25] Gasse, M., Chételat, D., Ferroni, N., Charlin, L., and Lodi, A. Exact

combinatorial optimization with graph convolutional neural networks.

Advances in Neural Information Processing Systems 32 (2019).
[26] Gupta, P., Gasse, M., Khalil, E., Mudigonda, P., Lodi, A., and Ben-

gio, Y. Hybrid models for learning to branch. Advances in neural
information processing systems 33 (2020), 18087–18097.

[27] Ha, C. T., Nguyen, T. T., Bui, L. T., and Wang, R. An online pack-

ing heuristic for the three-dimensional container loading problem in

dynamic environments and the physical internet. In Applications of
Evolutionary Computation: 20th European Conference, EvoApplications
2017, Amsterdam, The Netherlands, April 19-21, 2017, Proceedings, Part
II 20 (2017), Springer, pp. 140–155.

[28] Hadary, O., Marshall, L., Menache, I., Pan, A., Greeff, E. E., Dion,

D., Dorminey, S., Joshi, S., Chen, Y., Russinovich, M., et al. Protean:

Vm allocation service at scale. In Proceedings of the 14th USENIX
Conference on Operating Systems Design and Implementation (2020).

[29] Haj-Ali, A., Huang, Q. J., Xiang, J., Moses, W., Asanovic, K.,

Wawrzynek, J., and Stoica, I. Autophase: Juggling hls phase order-

ings in random forests with deep reinforcement learning. Proceedings
of Machine Learning and Systems 2 (2020), 70–81.

[30] Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and

Meger, D. Deep reinforcement learning that matters. In Proceedings
of the AAAI conference on artificial intelligence (2018), vol. 32.

[31] Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Larous-

silhe, Q., Gesmundo, A., Attariyan, M., and Gelly, S. Parameter-

efficient transfer learning for NLP. In Proceedings of the 36th Interna-
tional Conference on Machine Learning (2019).

[32] Howard, J., and Ruder, S. Universal language model fine-tuning

for text classification. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers)
(Melbourne, Australia, July 2018), I. Gurevych and Y. Miyao, Eds.,

Association for Computational Linguistics, pp. 328–339.

[33] Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang,

L., and Chen, W. Lora: Low-rank adaptation of large language models.

arXiv preprint arXiv:2106.09685 (2021).
[34] Hu, H., Zhang, X., Yan, X., Wang, L., and Xu, Y. Solving a new 3d

bin packing problem with deep reinforcement learning method, 2017.

[35] Huang, S., Dossa, R. F. J., Ye, C., Braga, J., Chakraborty, D., Mehta,

K., and Araújo, J. G. Cleanrl: High-quality single-file implementa-

tions of deep reinforcement learning algorithms. Journal of Machine
Learning Research 23, 274 (2022), 1–18.

[36] Janani, K., Anuhya, K., Manaswini, V. L., Likitha, V., Suneetha, B.,

and Vignesh, T. Analysis of ci/cd application in kubernetes architec-

ture. Mathematical Statistician and Engineering Applications 71, 4 (Mar.

2023), 11091–11097.

[37] Kaelbling, L. P., Littman, M. L., and Moore, A. W. Reinforcement

learning: A survey. Journal of Artificial Intelligence Research 4 (1996).
[38] Kumar, D., and Li, S. Separating storage and compute with the

databricks lakehouse platform. In 2022 IEEE 9th International Confer-
ence on Data Science and Advanced Analytics (DSAA) (2022), pp. 1–2.

700

 https://core.vmware.com/resource/vsan-cluster-design-large-clusters-versus-small-clusters#section1
 https://core.vmware.com/resource/vsan-cluster-design-large-clusters-versus-small-clusters#section1
https://www.ibm.com/analytics/cplex-optimizer
 https://www.gurobi.com/
 https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
 https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/17_NUMA_Architecture_Platforms/NUMA_Architecture_Platforms.html
https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/17_NUMA_Architecture_Platforms/NUMA_Architecture_Platforms.html
https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/17_NUMA_Architecture_Platforms/NUMA_Architecture_Platforms.html
https://pytorch.org/

[39] Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline reinforcement

learning: Tutorial, review, and perspectives on open problems. ArXiv
abs/2005.01643 (2020).

[40] Li, D., Ren, C., Gu, Z., Wang, Y., and Lau, F. Solving packing problems

by conditional query learning, 2020.

[41] Li, X., Yuan, M., Chen, D., Yao, J., and Zeng, J. A data-driven three-

layer algorithm for split delivery vehicle routing problem with 3d

container loading constraint. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery amp; Data Mining
(New York, NY, USA, 2018), KDD ’18, Association for Computing

Machinery, p. 528–536.

[42] Lin, M., and Jeon, H. Understanding oversubscribed memory manage-

ment for deep learning training. In Proceedings of the 5th Workshop on
Machine Learning and Systems (New York, NY, USA, 2025), EuroMLSys

’25, Association for Computing Machinery.

[43] Lin, M., Zhou, K., and Su, P. Drgpum: Guiding memory optimiza-

tion for gpu-accelerated applications. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 3 (New York, NY, USA, 2023),

Association for Computing Machinery.

[44] Mao, H., Schwarzkopf, M., Venkatakrishnan, S. B., Meng, Z., and

Alizadeh, M. Learning scheduling algorithms for data processing

clusters. In Proceedings of the ACM special interest group on data
communication. 2019, pp. 270–288.

[45] Mazyavkina, N., Sviridov, S., Ivanov, S., and Burnaev, E. Reinforce-

ment learning for combinatorial optimization: A survey, 2020.

[46] Mergen, M. F., Uhlig, V., Krieger, O., and Xenidis, J. Virtualization

for high-performance computing. SIGOPS Oper. Syst. Rev. 40, 2 (apr
2006), 8–11.

[47] Narayanan, D., Kazhamiaka, F., Abuzaid, F., Kraft, P., Agrawal, A.,

Kandula, S., Boyd, S., and Zaharia, M. Solving large-scale granular

resource allocation problems efficiently with pop. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles (2021).

[48] Padberg, M., and Rinaldi, G. A branch-and-cut algorithm for the

resolution of large-scale symmetric traveling salesman problems. SIAM
review 33, 1 (1991), 60–100.

[49] Panigrahy, R., Talwar, K., Uyeda, L., and Wieder, U. Heuristics for

vector bin packing. research. microsoft. com (2011).

[50] Parreño, F., Alvarez-Valdés, R., Tamarit, J. M., and Oliveira, J. F. A

maximal-space algorithm for the container loading problem. INFORMS
Journal on Computing 20, 3 (2008), 412–422.

[51] Petersen, B. K., Larma, M. L., Mundhenk, T. N., Santiago, C. P.,

Kim, S. K., and Kim, J. T. Deep symbolic regression: Recovering math-

ematical expressions from data via risk-seeking policy gradients. In

International Conference on Learning Representations (2021).
[52] Popescu, M.-C., Balas, V. E., Perescu-Popescu, L., and Mastorakis,

N. Multilayer perceptron and neural networks. WSEAS Transactions
on Circuits and Systems 8, 7 (2009), 579–588.

[53] Rengarajan, D., Vaidya, G., Sarvesh, A., Kalathil, D., and Shakkot-

tai, S. Reinforcement learning with sparse rewards using guidance

from offline demonstration. arXiv preprint arXiv:2202.04628 (2022).
[54] Riedmiller, M., Hafner, R., Lampe, T., Neunert, M., Degrave, J.,

van de Wiele, T., Mnih, V., Heess, N., and Springenberg, J. T. Learn-

ing by playing solving sparse reward tasks from scratch. In Proceedings
of the 35th International Conference on Machine Learning (10–15 Jul

2018), J. Dy and A. Krause, Eds., vol. 80 of Proceedings of Machine
Learning Research, PMLR, pp. 4344–4353.

[55] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov,

O. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347 (2017).

[56] Shirvani, M. H., Rahmani, A. M., and Sahafi, A. A survey study

on virtual machine migration and server consolidation techniques in

dvfs-enabled cloud datacenter: taxonomy and challenges. Journal of
King Saud University-Computer and Information Sciences 32, 3 (2020).

[57] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang,

A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al. Mas-

tering the game of go without human knowledge. nature (2017).
[58] Song, J., Yue, Y., Dilkina, B., et al. A general large neighborhood

search framework for solving integer linear programs. Advances in
Neural Information Processing Systems 33 (2020), 20012–20023.

[59] Talebian, H., Gani, A., Sookhak, M., Abdelatif, A. A., Yousafzai,

A., Vasilakos, A. V., and Yu, F. R. Optimizing virtual machine place-

ment in iaas data centers: taxonomy, review and open issues. Cluster
Computing 23 (2020), 837–878.

[60] Thalheim, J., Okelmann, P., Unnibhavi, H., Gouicem, R., and Bha-

totia, P. Vmsh: hypervisor-agnostic guest overlays for vms. In Pro-
ceedings of the Seventeenth European Conference on Computer Systems
(2022), pp. 678–696.

[61] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,

A. N., Kaiser, Ł., and Polosukhin, I. Attention is all you need. Ad-
vances in neural information processing systems 30 (2017).

[62] Wood, T., Ramakrishnan, K. K., Shenoy, P., Van Der Merwe, J.,

Hwang, J., Liu, G., and Chaufournier, L. Cloudnet: dynamic pool-

ing of cloud resources by live wan migration of virtual machines.

IEEE/ACM Trans. Netw. 23, 5 (Oct. 2015), 1568–1583.
[63] Xia, Y., Tsugawa, M., Fortes, J. A., and Chen, S. Large-scale vm

placement with disk anti-colocation constraints using hierarchical

decomposition and mixed integer programming. IEEE Transactions on
Parallel and Distributed Systems 28, 5 (2016), 1361–1374.

[64] Yang, K., Chen, Y., and Du, W. OrchLoc: In-Orchard Localization

via a Single LoRa Gateway and Generative Diffusion Model-based

Fingerprinting. In ACM MobiSys (2024).
[65] Zhang, J., Zi, B., and Ge, X. Attend2pack: Bin packing through deep

reinforcement learning with attention. ArXiv abs/2107.04333 (2021).
[66] Zhu, H., Gupta, V., Ahuja, S. S., Tian, Y., Zhang, Y., and Jin, X.

Network planning with deep reinforcement learning. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference (2021), pp. 258–271.

[67] Zhu, Q., Li, X., Zhang, Z., Luo, Z., Tong, X., Yuan, M., and Zeng, J.

Learning to pack: A data-driven tree search algorithm for large-scale 3d

bin packing problem. In Proceedings of the 30th ACM International Con-
ference on Information Knowledge Management (New York, NY, USA,

2021), CIKM ’21, Association for Computing Machinery, p. 4393–4402.

701

	Abstract
	1 Introduction
	2 Motivation Experiment
	2.1 Problem Formulation and Two Algorithms
	2.2 Experiment Results

	3 Design of VMR2L
	3.1 VM Rescheduling as an RL Problem
	3.2 Two-Stage Framework
	3.3 Feature Extraction with Sparse Attention
	3.4 Risk-seeking Evaluation

	4 Implementation
	5 Evaluation
	5.1 Existing Baseline Algorithms
	5.2 Overall Performance
	5.3 Performance Decomposition of VMR2L
	5.4 Different Constraints with Two-Stage Framework
	5.5 Objectives Generalization
	5.6 Generalization and Scalability of VMR2L
	5.7 Is A Larger Cluster More Difficult for VMR2L to Learn?
	5.8 Intuitions Behind VMR2L: A Case Study

	6 Related Work
	7 Discussion
	8 Conclusion
	References

